Skip to content

result ¤

Classes:

Functions:

  • parse_result
  • postprocessing

    Performs post-processing of EnergyScope results by organizing and categorizing key metrics into annual and monthly dataframes.

Result dataclass ¤

Result(
    constraints: dict[str, DataFrame] = dict(),
    parameters: dict[str, DataFrame] = dict(),
    objectives: dict[str, DataFrame] = dict(),
    sets: dict[str, DataFrame] = dict(),
    variables: dict[str, DataFrame] = dict(),
    postprocessing: dict[str, DataFrame] = dict(),
)

Attributes:

constraints class-attribute instance-attribute ¤

constraints: dict[str, DataFrame] = field(
    default_factory=dict
)

objectives class-attribute instance-attribute ¤

objectives: dict[str, DataFrame] = field(
    default_factory=dict
)

parameters class-attribute instance-attribute ¤

parameters: dict[str, DataFrame] = field(
    default_factory=dict
)

postprocessing class-attribute instance-attribute ¤

postprocessing: dict[str, DataFrame] = field(
    default_factory=dict
)

sets class-attribute instance-attribute ¤

sets: dict[str, DataFrame] = field(default_factory=dict)

variables class-attribute instance-attribute ¤

variables: dict[str, DataFrame] = field(
    default_factory=dict
)

parse_result ¤

parse_result(ampl, id_run=None, results_old=None) -> Result
Source code in src/energyscope/result.py
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
def parse_result(ampl, id_run=None, results_old=None) -> Result: 
    def _parse_set(ampl, name, set_) -> dict[str, pd.DataFrame]:
        if set_.is_scalar():
            return {name: set_.to_pandas().reset_index().rename(columns={'index': name})}
        else:
            result={name:{index[0]: index[1].get_values().toList() for index in ampl.get_set(name).instances()}}
            return result

    objectives = {name: objective.to_pandas().rename(columns=lambda v: v.rstrip('.val'))
                  for name, objective in ampl.get_objectives()}
    variables = {name: variable.to_pandas().rename(columns=lambda v: v.rstrip('.val'))
                 for name, variable in ampl.get_variables()}
    parameters = {name: parameter.to_pandas() for name, parameter in ampl.get_parameters()}
    sets = {}
    for name, set_ in ampl.get_sets():
        sets = {**sets, **_parse_set(ampl, name, set_)}

# If the solving of the model is not ideal we replace all results by 0 so that the rest of the optimizations continue,
#  to check which optimizations failed check the objectives results, OBJ = 0 means failed optimization
    if ampl.solve_result_num>99:
        for key in variables.keys():
            variables[key].loc[:,:]=0
        for key in parameters.keys():
            parameters[key].loc[:,:]=0
        for key in objectives.keys():
            objectives[key].loc[:,:]=0

    if id_run is not None:
        for _, value in objectives.items():
            value['Run'] = id_run
        for _, value in variables.items():
            value['Run'] = id_run
        for _, value in parameters.items():
            value['Run'] = id_run
        # for _, value in sets.items():
        #     value['Run'] = id_run

    # if results_old is not None:   # TODO implement the option to merge results in the parser
    #     variables = {name: pd.concat([results_old.variables[name], variables[name]]) for name in results_old.variables.keys()}
    #     parameters = {name: pd.concat([results_old.parameters[name], parameters[name]]) for name in results_old.parameters.keys()}

    return Result(
        objectives=objectives,
        variables=variables,
        parameters=parameters,
        sets=sets,
    )

postprocessing ¤

postprocessing(
    Result, df_monthly=True, df_annual=True
) -> Result

Performs post-processing of EnergyScope results by organizing and categorizing key metrics into annual and monthly dataframes.

Parameters:¤

Result : object The result object containing the outputs of the model's run.

bool, optional

If True, the function processes and stores monthly results, including the flows of different technologies. Defaults to True.

bool, optional

If True, the function processes and stores annual results, including investment costs, maintenance costs, production, and the economic lifetimes (tau) of technologies. Defaults to True.

Returns:¤

Result : object The updated Result object, containing the processed dataframes

Processing Steps:¤

  • For annual results (df_annual), the function compiles investment costs, maintenance costs, annual production, and flow multipliers. It also calculates annualized investment costs based on the economic lifetime (tau).
  • For monthly results (df_monthly), it computes the monthly flows of technologies using flow multipliers, operating time, and layer factors (in/out ratios).
  • Both annual and monthly results are categorized into high-level sectors (e.g., Electricity, Mobility, Industry) and assigned Category, Category_2, and Sector labels.
  • Technologies that do not fit predefined categories are assigned the "Others" label.

Sector-Technology Mapping:¤

The function uses predefined mappings between sectors (e.g., Electricity, Mobility, Industry) and their respective technologies to categorize the results accordingly.

Examples:¤

  • Annual Data: The function aggregates and processes investment costs (C_inv), maintenance costs (C_maint), and production (Annual_Prod), calculates annualized costs, and categorizes the data.
  • Monthly Data: It merges flow multipliers (F_Mult_t), operating time (t_op), and layer in-out factors (layers_in_out) to compute the monthly flows of technologies and their associated categories.
Source code in src/energyscope/result.py
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
def postprocessing(Result, df_monthly=True, df_annual=True) -> Result:
    """
        Performs post-processing of EnergyScope results by organizing and categorizing key metrics into annual and monthly dataframes.

        Parameters:
        ----------
        Result : object
            The result object containing the outputs of the model's run.

        df_monthly : bool, optional
            If True, the function processes and stores monthly results, including the flows of different technologies. Defaults to True.

        df_annual : bool, optional
            If True, the function processes and stores annual results, including investment costs, maintenance costs, production, and the economic lifetimes (tau) of technologies. Defaults to True.

        Returns:
        -------
        Result : object
            The updated Result object, containing the processed dataframes

        Processing Steps:
        -----------------
        - For annual results (`df_annual`), the function compiles investment costs, maintenance costs, annual production, and flow multipliers. It also calculates annualized investment costs based on the economic lifetime (`tau`).
        - For monthly results (`df_monthly`), it computes the monthly flows of technologies using flow multipliers, operating time, and layer factors (in/out ratios).
        - Both annual and monthly results are categorized into high-level sectors (e.g., Electricity, Mobility, Industry) and assigned `Category`, `Category_2`, and `Sector` labels.
        - Technologies that do not fit predefined categories are assigned the "Others" label.

        Sector-Technology Mapping:
        --------------------------
        The function uses predefined mappings between sectors (e.g., Electricity, Mobility, Industry) and their respective technologies to categorize the results accordingly.

        Examples:
        ---------
        - Annual Data:
        The function aggregates and processes investment costs (`C_inv`), maintenance costs (`C_maint`), and production (`Annual_Prod`), calculates annualized costs, and categorizes the data.
        - Monthly Data:
        It merges flow multipliers (`F_Mult_t`), operating time (`t_op`), and layer in-out factors (`layers_in_out`) to compute the monthly flows of technologies and their associated categories.
        """

    sector_technologies = {
        "Electricity": [
            "CCGT", "CCGT_CC", "COAL_US", "COAL_IGCC", "COAL_US_CC", "COAL_IGCC_CC", 
            "HYDRO_GAS_CHP", "NUCLEAR"
        ],
        "Mobility": [
            "TRAMWAY", "COACH_CNG_STOICH", "COACH_DIESEL", "COACH_EV", 
            "COACH_FC_HYBRID_H2", "COACH_FC_HYBRID_CH4", "COACH_HY_DIESEL", 
            "COMMUTER_RAIL_DIESEL", "COMMUTER_RAIL_ELEC", "TRAIN_DIESEL", 
            "TRAIN_ELEC", "TRAIN_NG", "TRAIN_H2", "BUS_CNG_STOICH", "BUS_DIESEL", 
            "BUS_FC_HYBRID_H2", "BUS_FC_HYBRID_CH4", "BUS_HY_DIESEL", "BUS_EV", 
            "CAR_BEV_LOWRANGE", "CAR_BEV_MEDRANGE_LOCAL", "CAR_DIESEL_LOCAL", 
            "CAR_DME_D10_LOCAL", "CAR_ETOH_E10_LOCAL", "CAR_ETOH_E85_LOCAL", 
            "CAR_FC_H2_LOCAL", "CAR_FC_CH4_LOCAL", "CAR_GASOLINE_LOCAL", 
            "CAR_HEV_LOCAL", "CAR_MEOH_LOCAL", "CAR_NG_LOCAL", "CAR_PHEV_LOCAL", 
            "CAR_BEV_MEDRANGE_LONGD", "CAR_DIESEL_LONGD", "CAR_DME_D10_LONGD", 
            "CAR_ETOH_E10_LONGD", "CAR_ETOH_E85_LONGD", "CAR_FC_H2_LONGD", 
            "CAR_FC_CH4_LONGD", "CAR_GASOLINE_LONGD", "CAR_HEV_LONGD", "CAR_HEV", 
            "CAR_MEOH_LONGD", "CAR_NG_LONGD", "CAR_PHEV_LONGD", "TRAIN_FREIGHT", 
            "TRAIN_FREIGHT_DIESEL", "TRAIN_FREIGHT_NG", "TRAIN_FREIGHT_H2", 
            "TRUCK", "TRUCK_CO2", "TRUCK_EV", "TRUCK_SNG", "TRUCK_FC", "PLANE",
            "CAR_GASOLINE", "CAR_DIESEL", "CAR_NG", "CAR_PHEV", "CAR_MEOH", "CAR_FC_H2", "CAR_FC_CH4", "CAR_BEV_MEDRANGE", "CAR_ETOH_E10", "CAR_ETOH_E85", "CAR_DME_D10"
        ],
        "Electric Infrastructure": [
            "TRAFO_ML", "TRAFO_LM", "TRAFO_HM", "TRAFO_MH", "TRAFO_EH", "TRAFO_HE",
            "EHV_GRID", "HV_GRID", "MV_GRID", "LV_GRID","GRID"
        ],
        "Gas Infrastructure": [
            "EHP_H2_GRID", "HP_H2_GRID", "MP_H2_GRID", "LP_H2_GRID",
            "EHP_NG_GRID", "HP_NG_GRID", "MP_NG_GRID", "LP_NG_GRID",
            "NG_EXP_EH", "NG_EXP_HM", "NG_EXP_ML", "NG_EXP_EH_COGEN", "NG_EXP_HM_COGEN", "NG_EXP_ML_COGEN",
            "NG_COMP_HE", "NG_COMP_MH", "NG_COMP_LM",
            "H2_EXP_EH", "H2_EXP_HM", "H2_EXP_ML", "H2_EXP_EH_COGEN", "H2_EXP_HM_COGEN", "H2_EXP_ML_COGEN",
            "H2_COMP_HE", "H2_COMP_MH", "H2_COMP_LM"
        ],
        "Wind": ["WIND"],
        "PV": ["PV_LV", "PV_MV", "PV_HV", "PV_EHV"],
        "Geothermal": ["GEOTHERMAL", "DHN_DEEP_GEO", "DEC_DEEP_GEO"],
        "Hydro River & Dam": ["NEW_HYDRO_RIVER", "NEW_HYDRO_DAM", "HYDRO_RIVER", "HYDRO_DAM"],
        "Industry": [
             "AL_MAKING", "AL_MAKING_HR", "CEMENT_PROD", 
            "CEMENT_PROD_HP", "FOOD_PROD", "FOOD_PROD_HP", "FOOD_PROD_HR", "PAPER_MAKING", 
            "PAPER_MAKING_HP", "PAPER_MAKING_HR", "STEEL_MAKING", "STEEL_MAKING_HP", 
            "STEEL_MAKING_HR", "WOOD_METHANOL", "CO2_METHANOL", "METHANOL_FT", 
            "METHANE_TO_METHANOL", "CUMENE_PROCESS", "METHANOL_CARBONYLATION", 
            "ETHANE_OXIDATION", "ETHYLENE_POLYMERIZATION", "PET_FORMATION", 
            "PVC_FORMATION", "POLYPROPYLENE_PP", "STYRENE_POLYMERIZATION",
            "HYDRO_GAS","AN_DIG_SI","BIOMASS_ETHANOL","FT","AN_DIG", "SNG_NG",
            "EFFICIENCY", "METHANATION","GASIFICATION_SNG", "PYROLYSIS","NG_REFORMING",
            "METHANOL_TO_AROMATICS","METHANOL_TO_OLEFINS","CO2-To-Diesel","ETHANE_CRACKING",
            "METATHESIS_PROPYLENE","SMART_PROCESS","CROPS_TO_JETFUELS","CO2_TO_JETFUELS",
            "BIOGAS_BIOMETHANE","CROPS_TO_ETHANOL","ETHANE_TO_ETHYLENE","ETHANOL_TO_JETFUELS"
            ,"GASIFICATION_H2","OTHER_BIOMASS","EOR","DOGR","UNMINEABLE_COAL_SEAM","DEEP_SALINE",
            "MINES_STORAGE","DIRECT_USAGE","CEMENT"
        ],
        "Low Temperature Heat": [
            "DHN_HP_ELEC", "DHN_COGEN_GAS", "DHN_COGEN_WOOD", "DHN_COGEN_WASTE", 
            "DHN_BOILER_GAS", "DHN_BOILER_WOOD", "DHN_BOILER_OIL", "DHN_RENOVATION", 
            "DEC_HP_ELEC", "DEC_THHP_GAS", "DEC_COGEN_GAS", "DEC_COGEN_OIL", 
            "DEC_COGEN_WOOD", "DEC_ADVCOGEN_H2", "DEC_BOILER_GAS", "DEC_BOILER_WOOD", 
            "DEC_BOILER_OIL", "DEC_SOLAR", "DEC_DIRECT_ELEC", "DEC_RENOVATION","DHN",
            "LT_DEC_WH", "LT_DHN_WH", "HT_LT", "HT_LT_DEC",
        ],
        "High Temperature Heat": 
        ["IND_COGEN_GAS", "IND_COGEN_WOOD", "IND_COGEN_WASTE", "IND_BOILER_GAS", 
            "IND_BOILER_WOOD", "IND_BOILER_OIL", "IND_BOILER_COAL", "IND_BOILER_WASTE", 
            "IND_HP_ELEC", "IND_DIRECT_ELEC"],
        "Storage": [
            "DIE_STO", "STO_DIE", "GASO_STO", "STO_GASO", "ELEC_STO", "STO_ELEC", 
            "H2_STO", "STO_H2", "CO2_STO", "STO_CO2", "NG_STO", "STO_NG",
            "DHN_TH_STORAGE", "DEC_TH_STORAGE","BATTERY",""
        ],
        "Electrolysis": [
            "ALKALINE_ELECTROLYSIS", "PEM_ELECTROLYSIS", "SOEC_ELECTROLYSIS"
        ],
        "Carbon Capture": ["CARBON_CAPTURE","DAC_HT", "DAC_LT"]
        #"Car Fuel Types": [ "CAR_GASOLINE", "CAR_DIESEL", "CAR_NG", "CAR_PHEV", "CAR_MEOH", "CAR_FC_H2", "CAR_FC_CH4", "CAR_BEV_MEDRANGE", "CAR_ETOH_E10", "CAR_ETOH_E85", "CAR_DME_D10"]
    }

    if df_annual:
        # df_annual
        df_ = [
        Result.variables['C_inv'].set_index('Run',append=True),
        Result.variables['C_maint'].set_index('Run',append=True),
        Result.variables['Annual_Prod'].set_index('Run',append=True),
        Result.variables['F_Mult'].set_index('Run',append=True),
        Result.parameters['tau'].set_index('Run',append=True),
        ]
        df_ = pd.concat(df_, axis=1, join="inner").loc[:,~pd.concat(df_, axis=1).columns.duplicated()]
        df_.rename(columns={'C_in':'C_inv'},inplace=True)
        df_['C_inv_an'] = df_['C_inv'] * df_['tau']

        ## Add categories
        df_['Category'] = df_.index.to_series().apply(lambda x: next((k for k, v in Result.sets['TECHNOLOGIES_OF_END_USES_TYPE'].items() if x[0] in v), pd.NA))
        df_["Category_2"] = df_.index.get_level_values(0).map({tech: sector for sector, techs in sector_technologies.items() for tech in techs})
        df_['Sector'] = pd.Series(dtype='str')
        df_.loc[df_['Category'].str.contains('MOB_',na=False),'Sector'] = 'Mobility'
        df_.loc[df_['Category'].str.contains('ELECTRICITY_',na=False),'Sector'] = 'Electricity'
        df_.loc[df_['Category'].str.contains('HEAT_HIGH',na=False),'Sector'] = 'Industrial Heat'
        df_.loc[df_['Category'].str.contains('HEAT_LOW',na=False),'Sector'] = 'Domestic Heat'

        Industry_list = ['METHANOL','ALUMINUM','PHENOL','ACETIC_ACID','ACETONE','PE','PET','PVC','PP','PS','CEMENT','FOOD','PAPER','STEEL']
        df_.loc[df_['Category'].isin(Industry_list),'Sector'] = 'Industry'
        df_.loc[df_.loc[:,'Category'].isna(),'Sector'] = 'Others'

        ## Fill missing category with "Others"
        df_.loc[df_['Category'].isna(),'Category'] = 'Others'
        df_.loc[df_['Category_2'].isna(),'Category_2'] = 'Others'

        Result.postprocessing['df_annual'] = df_

    if df_monthly:
        # df_monthly

        F_Mult_t = Result.variables['F_Mult_t'].reset_index().rename(
            columns={"index0": "Technologies", "index1": "Periods"})

        lyrio = Result.parameters['layers_in_out'].reset_index().rename(
            columns={"index0": "Technologies", "index1": "Flow"})
        lyrio = lyrio.loc[lyrio['layers_in_out']!=0,:]  # Drop useless rows, lighten the postprocessing

        t_op = Result.parameters['t_op'].reset_index().rename(columns={'index':'Periods'})

        F_Mult_t = F_Mult_t[F_Mult_t['F_Mult_t']!=0]

        df_ = pd.merge(F_Mult_t,t_op,on=["Periods",'Run'])
        df_ = pd.merge(df_,lyrio,on=["Technologies",'Run'])

        df_['Monthly_flow']=df_['F_Mult_t']*df_['t_op']*df_['layers_in_out']

        # Drop row without information, ie. not production
        df_ = df_.loc[df_['layers_in_out']!=0,:]

        ## Add categories
        df_['Category'] = df_['Technologies'].apply(lambda x: next((k for k, v in Result.sets['TECHNOLOGIES_OF_END_USES_TYPE'].items() if x in v), pd.NA))

        # Assign 'Category_2' based on mapping 'Technologies' to sectors
        df_["Category_2"] = df_['Technologies'].map({tech: sector for sector, techs in sector_technologies.items() for tech in techs})
        df_['Sector'] = pd.Series(dtype='str')
        df_.loc[df_['Flow'].str.contains('MOB_',na=False),'Sector'] = 'Mobility'
        df_.loc[df_['Flow'].str.contains('ELECTRICITY_',na=False),'Sector'] = 'Electricity'
        df_.loc[df_['Flow'].str.contains('HEAT_HIGH',na=False),'Sector'] = 'Industrial Heat'
        df_.loc[df_['Flow'].str.contains('HEAT_LOW',na=False),'Sector'] = 'Domestic Heat'

        ## Fill missing category with "Others"
        df_.loc[df_['Category'].isna(),'Category'] = 'Others'
        df_.loc[df_['Category_2'].isna(),'Category_2'] = 'Others'
        df_.loc[df_['Sector'].isna(),'Sector'] = 'Others'

        Result.postprocessing['df_monthly'] = df_

    return Result