energyscope
¤
Classes:
Energyscope
¤
Methods:
-
add_technology
–Adds a new technology to the energy system model, assigns the technology to sets,
-
calc
–Calls AMPL with
df
as .dat and returns the parsed result. -
calc_sequence
–Calls AMPL
n
times varyingparameters
based onsequence
withdata
as .dat. -
export_ampl
–Exports the model and data to .mod and .dat files for AMPL.
-
export_glpk
–Exports the model and data to files for GLPK.
Attributes:
-
es_model
(AMPL
) – -
model
– -
solver_options
–
Source code in src/energyscope/energyscope.py
16 17 18 |
|
add_technology
¤
Adds a new technology to the energy system model, assigns the technology to sets, and defines all parameters including layers_in_out for the technology.
Parameters:¤
tech_parameters : dict Dictionary containing all technology parameters, including: - Name of the technology (required) - Optional parameters: If not provided, default values will be used. - ref_size (default: 0.001) - c_inv (default: 0.000001) - c_maint (default: 0) - lifetime (default: 20) - f_max (default: 300000) - f_min (default: 0) - fmax_perc (default: 1) - fmin_perc (default: 0) - c_p_t (default: 1 for all periods) - c_p (default: 1) - gwp_constr (default: 0) - trl (default: 9) - layers_in_out (default: 0 for all layers like 'ELECTRICITY_MV', 'HEAT_LOW_T_DHN', 'COAL')
str
Directory where the output .dat
file will be saved.
dict, optional
A dictionary of sets that the technology belongs to, in the format: { 'TECHNOLOGIES_OF_END_USES_TYPE': ['ELECTRICITY_MV'], 'TECHNOLOGIES_OF_END_USES_TYPE': ['HEAT_LOW_T_DHN'] } Default: {'INFRASTRUCTURE': True} when nothing is declared.
Returns:¤
None
Source code in src/energyscope/energyscope.py
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
|
calc
¤
calc(
ds: Dataset = None,
parser: Callable[[AMPL], Result] = parse_result,
) -> Result
Calls AMPL with df
as .dat and returns the parsed result.
Source code in src/energyscope/energyscope.py
62 63 64 65 66 67 68 69 70 71 72 73 74 |
|
calc_sequence
¤
calc_sequence(
data: DataFrame,
parser: Callable[[AMPL], Result] = parse_result,
ds: Dataset = None,
) -> list[Result]
Calls AMPL n
times varying parameters
based on sequence
with data
as .dat.
Parameters:¤
data : pd.DataFrame A DataFrame containing the parameters and their associated values to be used in the AMPL model. The DataFrame should have the following structure:
- `param`: (str) The name of the parameter to be varied in the AMPL model.
- `index0`, `index1`, `index2`, `index3`: (str or categorical) Index columns used to uniquely identify the parameter
configurations. These can include specific categories or labels related to the parameter.
- `value1`, `value2`, ..., `valueN`: (float or int) One or more columns containing the numerical values to be set for the
respective parameter during each iteration of the model run. The number of value columns is flexible, ranging from 1 to N,
where N is the total number of iterations required.
Example:
```
| param | index0 | index1 | index2 | index3 | value1 | value2 | value3 | ... | valueN |
|-----------------------|-----------------------|--------------|--------|--------|---------|---------|---------|-----|---------|
| f_min | PV | | | | 2 | 2.6 | 5.2 | ... | 26 |
| f_max | PV | | | | 2 | 2.6 | 5.2 | ... | 26 |
| end_uses_demand_year | MOBILITY_FREIGHT_ELD | TRANSPORTATION| | | 45000 | 33226.71| 33226.71| ... | 33226.71|
| c_inv | WIND_ONSHORE | | | | 800 | 850 | 900 | ... | 1300 |
```
Callable[[AMPL], Result], optional
A function that parses the AMPL model results. It should accept an AMPL object as input and return a Result object.
The default is parse_result
.
Dataset, optional
An optional dataset object that can be used during the initial run of the model.
Returns:¤
list[Result] A list of results obtained after each model run. Each element in the list corresponds to the result of one iteration of the model.
Raises:¤
ValueError If the DataFrame does not contain the required columns or if there are missing values in the critical columns.
TypeError If the 'value' columns do not contain numeric data.
Source code in src/energyscope/energyscope.py
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
|
export_ampl
¤
export_ampl(
mod_filename: str = "/tutorial_output/energyscope.mod",
dat_filename: str = "/tutorial_output/energyscope.dat",
)
Exports the model and data to .mod and .dat files for AMPL.
Parameters:
-
mod_filename
¤str
, default:'/tutorial_output/energyscope.mod'
) –Path to the .mod file to export the model.
-
dat_filename
¤str
, default:'/tutorial_output/energyscope.dat'
) –Path to the .dat file to export the data.
Source code in src/energyscope/energyscope.py
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
|
export_glpk
¤
export_glpk(mod_filename: str, dat_filename: str)
Exports the model and data to files for GLPK.
Parameters:
-
mod_filename
¤str
) –Path to the .mod file to export the model.
-
dat_filename
¤str
) –Path to the .dat file to export the data.
Source code in src/energyscope/energyscope.py
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
|