Skip to content

LCV Methane FC¤

Light Commercial Vehicle Class Overview¤

The Light Commercial Vehicle class encompasses four-wheeled, two-axle vehicles, primarily designed for goods transportation. These vehicles are notable for their adaptability to a range of cargo needs, demonstrating versatility in the light-duty commercial sector.

Light Commercial Vehicle Performance Metrics¤

  • Operational Distance (dannual): On an annual basis, these vehicles are capable of covering a distance of 38,600 km.
  • Average Cargo Weight (nlpv): They support an average cargo weight of 0.19 tonnes per vehicle, accommodating the transportation needs of various goods.
  • Capacity Factor: A 10% capacity utilization factor is applied to account for frequent stops and loading times, which are characteristic of their operational environment.
  • Reference Efficiency: This results in a reference efficiency of 8.37 tonne-kilometers per hour (tkm/h), underlining their essential role in fulfilling light-duty commercial transportation tasks.

The reference efficiency is calculated as follows:

\[ ref_{efficiency} = \dfrac{d_{annual} \cdot n_{lpv}}{8760 \cdot c_p} \]

Where cp represents the capacity utilization percentage. This formula reflects the annual operational distance, the average cargo weight, and the capacity utilization factor, offering a clear perspective on the efficiency and utility of Light Commercial Vehicles in commercial transportation.

Methane Fuel Cell¤

Methane fuel cell vehicles leverage the chemical energy of methane, CH4, to generate electricity through a fuel cell. These vehicles operate on the principle of converting methane directly into electrical energy, which then powers the vehicle’s electric motor.

ES Model Integration¤

All the parameters concerning the LCV Methane FC are listed in the table below.

entry_key value unit sets source_reference
CO2_E (layer) 1.729 kg_CO2 NA Agez, Maxime; Ménard, Jean-François; Saunier, François, (2022): "Analyse du Cycle de Vie de Filières Énergétiques et de Leur Utilisation pour le Transport Routier au Québec – Partie 2 : Utilisation"
MOB_FREIGHT_ROAD (layer) 1 tkm NA Agez, Maxime; Ménard, Jean-François; Saunier, François, (2022): "Analyse du Cycle de Vie de Filières Énergétiques et de Leur Utilisation pour le Transport Routier au Québec – Partie 2 : Utilisation"
NG_HP (layer) -9.604 kWh NA Agez, Maxime; Ménard, Jean-François; Saunier, François, (2022): "Analyse du Cycle de Vie de Filières Énergétiques et de Leur Utilisation pour le Transport Routier au Québec – Partie 2 : Utilisation"
c_inv 8004.78 CAD/(tkm/h) NA Agez, Maxime; Ménard, Jean-François; Saunier, François, (2022): "Analyse du Cycle de Vie de Filières Énergétiques et de Leur Utilisation pour le Transport Routier au Québec – Partie 2 : Utilisation"
c_maint 556.78 CAD/(tkm/h)/y NA Agez, Maxime; Ménard, Jean-François; Saunier, François, (2022): "Analyse du Cycle de Vie de Filières Énergétiques et de Leur Utilisation pour le Transport Routier au Québec – Partie 2 : Utilisation"
lifetime 15 y NA Agez, Maxime; Ménard, Jean-François; Saunier, François, (2022): "Analyse du Cycle de Vie de Filières Énergétiques et de Leur Utilisation pour le Transport Routier au Québec – Partie 2 : Utilisation"
ref_size 8.37 tkm/h NA Agez, Maxime; Ménard, Jean-François; Saunier, François, (2022): "Analyse du Cycle de Vie de Filières Énergétiques et de Leur Utilisation pour le Transport Routier au Québec – Partie 2 : Utilisation"

References¤

Data Sources
Agez, Maxime; Ménard, Jean-François; Saunier, François. (2022). "Analyse du Cycle de Vie de Filières Énergétiques et de Leur Utilisation pour le Transport Routier au Québec – Partie 2 : Utilisation"