82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270 | def postprocessing(Result, df_monthly=True, df_annual=True) -> Result:
"""
Performs post-processing of EnergyScope results by organizing and categorizing key metrics into annual and monthly dataframes.
Adds a new column "Annual_Use" to the `df_annual` DataFrame.
Parameters:
----------
Result : object
The result object containing the outputs of the model's run.
df_monthly : bool, optional
If True, the function processes and stores monthly results, including the flows of different technologies. Defaults to True.
df_annual : bool, optional
If True, the function processes and stores annual results, including investment costs, maintenance costs, production, and the economic lifetimes (tau) of technologies. Defaults to True.
Returns:
-------
Result : object
The updated Result object, containing the processed dataframes.
"""
sector_technologies = {
"Electricity": ["CCGT", "CCGT_CC", "COAL_US", "COAL_IGCC", "COAL_US_CC", "COAL_IGCC_CC", "HYDRO_GAS_CHP"],
"Nuclear": ["NUCLEAR"],
"Mobility": ["TRAMWAY", "COACH_CNG_STOICH", "COACH_DIESEL", "COACH_EV", "COACH_FC_HYBRID_H2",
"COACH_FC_HYBRID_CH4", "COACH_HY_DIESEL", "COMMUTER_RAIL_DIESEL", "COMMUTER_RAIL_ELEC",
"TRAIN_DIESEL",
"TRAIN_ELEC", "TRAIN_NG", "TRAIN_H2", "BUS_CNG_STOICH", "BUS_DIESEL", "BUS_FC_HYBRID_H2",
"BUS_FC_HYBRID_CH4", "BUS_HY_DIESEL", "BUS_EV", "CAR_BEV_LOWRANGE", "CAR_BEV_MEDRANGE_LOCAL",
"CAR_DIESEL_LOCAL", "CAR_DME_D10_LOCAL", "CAR_ETOH_E10_LOCAL", "CAR_ETOH_E85_LOCAL",
"CAR_FC_H2_LOCAL",
"CAR_FC_CH4_LOCAL", "CAR_GASOLINE_LOCAL", "CAR_HEV_LOCAL", "CAR_MEOH_LOCAL", "CAR_NG_LOCAL",
"CAR_PHEV_LOCAL", "CAR_BEV_MEDRANGE_LONGD", "CAR_DIESEL_LONGD", "CAR_DME_D10_LONGD",
"CAR_ETOH_E10_LONGD",
"CAR_ETOH_E85_LONGD", "CAR_FC_H2_LONGD", "CAR_FC_CH4_LONGD", "CAR_GASOLINE_LONGD", "CAR_HEV_LONGD",
"CAR_HEV", "CAR_MEOH_LONGD", "CAR_NG_LONGD", "CAR_PHEV_LONGD", "TRAIN_FREIGHT",
"TRAIN_FREIGHT_DIESEL",
"TRAIN_FREIGHT_NG", "TRAIN_FREIGHT_H2", "TRUCK", "TRUCK_CO2", "TRUCK_EV", "TRUCK_SNG", "TRUCK_FC",
"PLANE",
"CAR_GASOLINE", "CAR_DIESEL", "CAR_NG", "CAR_PHEV", "CAR_MEOH", "CAR_FC_H2", "CAR_FC_CH4",
"CAR_BEV_MEDRANGE", "CAR_ETOH_E10", "CAR_ETOH_E85", "CAR_DME_D10"],
"Electric Infrastructure": ["TRAFO_ML", "TRAFO_LM", "TRAFO_HM", "TRAFO_MH", "TRAFO_EH", "TRAFO_HE", "EHV_GRID",
"HV_GRID", "MV_GRID", "LV_GRID", "GRID"],
"Gas Infrastructure": ["EHP_H2_GRID", "HP_H2_GRID", "MP_H2_GRID", "LP_H2_GRID", "EHP_NG_GRID", "HP_NG_GRID",
"MP_NG_GRID", "LP_NG_GRID", "NG_EXP_EH", "NG_EXP_HM", "NG_EXP_ML", "NG_EXP_EH_COGEN",
"NG_EXP_HM_COGEN",
"NG_EXP_ML_COGEN", "NG_COMP_HE", "NG_COMP_MH", "NG_COMP_LM", "H2_EXP_EH", "H2_EXP_HM",
"H2_EXP_ML",
"H2_EXP_EH_COGEN", "H2_EXP_HM_COGEN", "H2_EXP_ML_COGEN", "H2_COMP_HE", "H2_COMP_MH",
"H2_COMP_LM"],
"Wind": ["WIND", "WIND_ONSHORE", "WIND_OFFSHORE"], "PV": ["PV_LV", "PV_MV", "PV_HV", "PV_EHV", "PV"],
"Geothermal": ["GEOTHERMAL", "DHN_DEEP_GEO", "DEC_DEEP_GEO"],
"Hydro River & Dam": ["NEW_HYDRO_RIVER", "NEW_HYDRO_DAM", "HYDRO_RIVER", "HYDRO_DAM"],
"Industry": ["AL_MAKING", "AL_MAKING_HR", "CEMENT_PROD", "CEMENT_PROD_HP", "FOOD_PROD", "FOOD_PROD_HP",
"FOOD_PROD_HR", "PAPER_MAKING", "PAPER_MAKING_HP", "PAPER_MAKING_HR", "STEEL_MAKING",
"STEEL_MAKING_HP",
"STEEL_MAKING_HR", "WOOD_METHANOL", "CO2_METHANOL", "METHANOL_FT", "METHANE_TO_METHANOL",
"CUMENE_PROCESS",
"METHANOL_CARBONYLATION", "ETHANE_OXIDATION", "ETHYLENE_POLYMERIZATION", "PET_FORMATION",
"PVC_FORMATION",
"POLYPROPYLENE_PP", "STYRENE_POLYMERIZATION", "HYDRO_GAS", "AN_DIG_SI", "BIOMASS_ETHANOL", "FT",
"AN_DIG",
"SNG_NG", "EFFICIENCY", "METHANATION", "GASIFICATION_SNG", "PYROLYSIS", "NG_REFORMING",
"METHANOL_TO_AROMATICS", "METHANOL_TO_OLEFINS", "CO2-To-Diesel", "ETHANE_CRACKING",
"METATHESIS_PROPYLENE",
"SMART_PROCESS", "CROPS_TO_JETFUELS", "CO2_TO_JETFUELS", "BIOGAS_BIOMETHANE", "CROPS_TO_ETHANOL",
"ETHANE_TO_ETHYLENE", "ETHANOL_TO_JETFUELS", "GASIFICATION_H2", "OTHER_BIOMASS", "EOR", "DOGR",
"UNMINEABLE_COAL_SEAM", "DEEP_SALINE", "MINES_STORAGE", "DIRECT_USAGE", "CEMENT"],
"Low Temperature Heat": ["DHN_HP_ELEC", "DHN_COGEN_GAS", "DHN_COGEN_WOOD", "DHN_COGEN_WASTE", "DHN_BOILER_GAS",
"DHN_BOILER_WOOD", "DHN_BOILER_OIL", "DHN_RENOVATION", "DEC_HP_ELEC", "DEC_THHP_GAS",
"DEC_COGEN_GAS",
"DEC_COGEN_OIL", "DEC_COGEN_WOOD", "DEC_ADVCOGEN_H2", "DEC_BOILER_GAS",
"DEC_BOILER_WOOD", "DEC_BOILER_OIL",
"DEC_SOLAR", "DEC_DIRECT_ELEC", "DEC_RENOVATION", "DHN", "LT_DEC_WH", "LT_DHN_WH",
"HT_LT", "HT_LT_DEC", ],
"High Temperature Heat": ["IND_COGEN_GAS", "IND_COGEN_WOOD", "IND_COGEN_WASTE", "IND_BOILER_GAS",
"IND_BOILER_WOOD", "IND_BOILER_OIL", "IND_BOILER_COAL", "IND_BOILER_WASTE",
"IND_HP_ELEC",
"IND_DIRECT_ELEC"],
"Storage": ["DIE_STO", "STO_DIE", "GASO_STO", "STO_GASO", "ELEC_STO", "STO_ELEC", "H2_STO", "STO_H2", "CO2_STO",
"STO_CO2", "NG_STO", "STO_NG", "DHN_TH_STORAGE", "DEC_TH_STORAGE", "BATTERY", ""],
"Electrolysis": ["ALKALINE_ELECTROLYSIS", "PEM_ELECTROLYSIS", "SOEC_ELECTROLYSIS"],
"Carbon Capture": ["CARBON_CAPTURE", "DAC_HT", "DAC_LT"]}
# Extract all technologies from Result for dynamic assignment
# Extract all technologies from Result for dynamic assignment
all_technologies = Result.sets['TECHNOLOGIES']['TECHNOLOGIES'].tolist()
# Ensure keywords and technology names are checked in a case-insensitive manner
mobility_keywords = ["BUS_", "CAR_", "COACH_", "PLANE_", "SEMI_", "SUV_", "TRAIN_", "TRUCK_"]
# Iterate through all technologies and check if any match the keywords
for tech in all_technologies:
if any(keyword in tech.upper() for keyword in mobility_keywords):
sector_technologies.setdefault("Mobility", []).append(tech)
# Extract and add all resources to the "Resources" category
all_resources = Result.sets['RESOURCES']['RESOURCES'].tolist()
sector_technologies['Resources'] = all_resources
if df_annual:
# Process annual data as in the original function
df_ = [Result.variables['C_inv'].set_index('Run', append=True),
Result.variables['C_maint'].set_index('Run', append=True),
Result.variables['Annual_Prod'].set_index('Run', append=True),
Result.variables['F_Mult'].set_index('Run', append=True),
Result.parameters['tau'].set_index('Run', append=True),
Result.variables['C_op'].set_index('Run', append=True), ]
df_ = pd.concat(df_, axis=1).loc[:, ~pd.concat(df_, axis=1).columns.duplicated()]
df_.rename(columns={'C_in': 'C_inv'}, inplace=True)
df_['C_inv_an'] = df_['C_inv'] * df_['tau']
# Replace NaN with 0
df_ = df_.fillna(0)
# Filter out rows where all columns are zero
# df_ = df_.loc[(df_ != 0).any(axis=1)]
# Calculate "Annual_Use" directly for `df_annual`
F_Mult_t = Result.variables['F_Mult_t'].reset_index().rename(
columns={"index0": "Technologies", "index1": "Periods"})
t_op = Result.parameters['t_op'].reset_index().rename(columns={'index': 'Periods'})
# Merge to calculate monthly usage
monthly_usage = pd.merge(F_Mult_t, t_op, on=["Periods", 'Run'])
monthly_usage['Monthly_Use'] = monthly_usage['F_Mult_t'] * monthly_usage['t_op']
# Sum over all months to get the annual use
annual_usage = monthly_usage.groupby(['Technologies', 'Run'])['Monthly_Use'].sum().reset_index()
annual_usage.set_index(['Technologies', 'Run'], inplace=True)
# Add "Annual_Use" to df_annual
df_['Annual_Use'] = annual_usage['Monthly_Use']
df_['Annual_Use'] = df_['Annual_Use'].fillna(0)
# Add categories before adding the "Annual_Use" column
df_['Category'] = df_.index.to_series().apply(
lambda x: next((k for k, v in Result.sets['TECHNOLOGIES_OF_END_USES_TYPE'].items() if x[0] in v), pd.NA))
# Create `Category_2` with correct mapping
df_["Category_2"] = df_.index.get_level_values(0).map(
{tech: sector for sector, techs in sector_technologies.items() for tech in techs})
# Add sectors based on categories
df_['Sector'] = pd.Series(dtype='str')
df_.loc[df_['Category'].str.contains('MOB_', na=False), 'Sector'] = 'Mobility'
df_.loc[df_['Category'].str.contains('ELECTRICITY_', na=False), 'Sector'] = 'Electricity'
df_.loc[df_['Category'].str.contains('HEAT_HIGH', na=False), 'Sector'] = 'Industrial Heat'
df_.loc[df_['Category'].str.contains('HEAT_LOW', na=False), 'Sector'] = 'Domestic Heat'
Industry_list = ['METHANOL', 'ALUMINUM', 'PHENOL', 'ACETIC_ACID', 'ACETONE', 'PE', 'PET', 'PVC', 'PP', 'PS',
'CEMENT', 'FOOD', 'PAPER', 'STEEL']
df_.loc[df_['Category'].isin(Industry_list), 'Sector'] = 'Industry'
df_.loc[df_['Category'].isna(), 'Sector'] = 'Others'
# Fill missing categories with "Others"
df_['Category'] = df_['Category'].fillna('Others')
df_['Category_2'] = df_['Category_2'].fillna('Others')
Result.postprocessing['df_annual'] = df_
if df_monthly:
# Existing monthly processing (unchanged)
F_Mult_t = Result.variables['F_Mult_t'].reset_index().rename(
columns={"index0": "Technologies", "index1": "Periods"})
lyrio = Result.parameters['layers_in_out'].reset_index().rename(
columns={"index0": "Technologies", "index1": "Flow"})
lyrio = lyrio.loc[lyrio['layers_in_out'] != 0, :] # Drop useless rows, lighten the postprocessing
t_op = Result.parameters['t_op'].reset_index().rename(columns={'index': 'Periods'})
F_Mult_t = F_Mult_t[F_Mult_t['F_Mult_t'] != 0]
df_ = pd.merge(F_Mult_t, t_op, on=["Periods", 'Run'])
df_ = pd.merge(df_, lyrio, on=["Technologies", 'Run'])
df_['Monthly_flow'] = df_['F_Mult_t'] * df_['t_op'] * df_['layers_in_out']
df_ = df_.loc[df_['layers_in_out'] != 0, :] # Drop rows without production info
df_['Category'] = df_['Technologies'].apply(
lambda x: next((k for k, v in Result.sets['TECHNOLOGIES_OF_END_USES_TYPE'].items() if x in v), pd.NA))
df_["Category_2"] = df_.index.get_level_values(0).map(
{tech: sector for sector, techs in sector_technologies.items() for tech in techs})
df_['Sector'] = pd.Series(dtype='object')
df_.loc[df_['Flow'].str.contains('MOB_', na=False), 'Sector'] = 'Mobility'
df_.loc[df_['Flow'].str.contains('ELECTRICITY_', na=False), 'Sector'] = 'Electricity'
df_.loc[df_['Flow'].str.contains('HEAT_HIGH', na=False), 'Sector'] = 'Industrial Heat'
df_.loc[df_['Flow'].str.contains('HEAT_LOW', na=False), 'Sector'] = 'Domestic Heat'
df_['Category'] = df_['Category'].fillna('Others')
df_['Category_2'] = df_['Category_2'].fillna('Others')
df_['Sector'] = df_['Sector'].fillna('Others')
Result.postprocessing['df_monthly'] = df_
return Result
|