Skip to content

plots ¤

Functions:

  • generate_sankey_flows

    Processes the Result object to transform and filter flow data for Sankey diagram visualization.

  • plot_comparison

    Plots the parametrization results by visualizing the specified variable for two selected runs using a mirror bar plot.

  • plot_distribution
  • plot_parametrisation

    Plots the parametrization results by visualizing the specified variable over multiple runs, grouped by a given category.

  • plot_sankey

generate_sankey_flows ¤

generate_sankey_flows(
    results: Result,
    aggregate_mobility,
    aggregate_grid,
    aggregate_technology,
    run_id,
) -> DataFrame

Processes the Result object to transform and filter flow data for Sankey diagram visualization.

This function takes in a Result object, which contains various data frames and parameters from an energy modeling process, and performs several transformations and aggregations. The goal is to prepare the flow data for use in a Sankey diagram.

Parameters:

  • results ¤

    (Result) –

    A Result object containing dictionaries of data frames for constraints, parameters, objectives, sets, and variables.

Returns:

  • DataFrame

    pd.DataFrame: A processed DataFrame with 'source', 'target', and 'value' columns, ready for Sankey diagram visualization.

Source code in src/energyscope/plots.py
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
def generate_sankey_flows(results: Result, aggregate_mobility, aggregate_grid, aggregate_technology,
                          run_id) -> pd.DataFrame:
    """
    Processes the `Result` object to transform and filter flow data for Sankey diagram visualization.

    This function takes in a `Result` object, which contains various data frames and parameters
    from an energy modeling process, and performs several transformations and aggregations.
    The goal is to prepare the flow data for use in a Sankey diagram.

    Args:
        results (Result):
            A `Result` object containing dictionaries of data frames for constraints,
            parameters, objectives, sets, and variables.

    Returns:
        pd.DataFrame:
            A processed DataFrame with 'source', 'target', and 'value' columns,
            ready for Sankey diagram visualization.
    """

    df_flow = results.postprocessing['df_monthly'].loc[results.postprocessing['df_monthly']['Run'] == run_id, :]

    df_flow = df_flow.groupby(['Technologies', 'Flow']).sum().rename(columns={'Monthly_flow': 'value'}).loc[:,
              ['value']].reset_index()

    # Swap target and source for positive values and take absolute value
    df_flow.rename(columns={'Technologies': 'target', 'Flow': 'source'}, inplace=True)
    df_flow.loc[df_flow['value'] > 0, ['target', 'source']] = df_flow.loc[
        df_flow['value'] > 0, ['source', 'target']].to_numpy()
    df_flow['value'] = abs(df_flow['value'])

    # Aggregate and clean data
    df_flow = df_flow.groupby(['target', 'source']).sum().reset_index()
    df_flow.loc[df_flow['target'] == df_flow['source'], 'source'] = 'IMP_' + df_flow.loc[
        df_flow['target'] == df_flow['source'], 'source'].astype(str)
    df_flow = df_flow[~df_flow['source'].str.startswith('IMP_RES')]

    # Drop CO2 flows except specified ones
    df_flow = df_flow[(~df_flow['source'].str.contains("CO2_")) | (df_flow['source'] == 'CO2_TO_DIESEL') | (
            df_flow['source'] == 'CO2_TO_JETFUELS')]
    df_flow = df_flow[(~df_flow['target'].str.contains("CO2_")) | (df_flow['target'] == 'CO2_TO_DIESEL') | (
            df_flow['target'] == 'CO2_TO_JETFUELS')]

    df_flow.sort_values('source', inplace=True)

    # Transform pkm & tkm into GWh
    techno_mob = df_flow.loc[df_flow['target'].str.startswith('MOB_'), :]['target'].unique().tolist()

    df_flow.loc[df_flow['target'].isin(techno_mob), 'value'] = (
        df_flow.loc[df_flow['target'].isin(df_flow.loc[df_flow['target'].isin(techno_mob), 'source']), :]
        .groupby('target')
        .sum()
        .reset_index()
        .sort_values('target')['value']
        .values
    )

    ## Add EUD
    EUD = results.parameters['end_uses_demand_year']
    EUD = EUD.loc[EUD['Run'] == run_id, :]
    EUD = EUD.loc[EUD['end_uses_demand_year'] > 0, :]
    EUD = EUD.reset_index().groupby('index0').sum().reset_index().loc[:, ['index0', 'end_uses_demand_year']]
    EUD = EUD.rename(columns={'index0': 'source', 'end_uses_demand_year': 'value'})
    EUD = EUD.loc[EUD['source'].str.contains('ELECTRICITY'), :]
    EUD['target'] = 'EUD_' + EUD['source']

    df_flow = pd.concat([df_flow, EUD]).reset_index().drop(columns='index')

    ## Aggregate EUD types
    EUD_types = results.sets['END_USES_TYPES_OF_CATEGORY']
    EUD_types_reverse = {item: key for key, values in EUD_types.items() for item in values}

    # Create a mask for rows where 'target' and 'source' need changes
    mask_target = df_flow['target'].isin(EUD_types_reverse.keys())
    mask_source = df_flow['source'].isin(EUD_types_reverse.keys())

    # Apply mapping to 'target' and 'source' columns
    df_flow.loc[mask_target, 'target'] = df_flow.loc[mask_target, 'target'].map(EUD_types_reverse)
    df_flow.loc[mask_source, 'source'] = df_flow.loc[mask_source, 'source'].map(EUD_types_reverse)

    # Ensure consistency: if 'target' changes, update corresponding 'source' if necessary
    for index, row in df_flow.iterrows():
        if row['target'] in EUD_types_reverse.values() and row['source'] in EUD_types_reverse.keys():
            df_flow.at[index, 'source'] = EUD_types_reverse[row['source']]

    if aggregate_mobility:
        ## Aggregation of mobility flows
        # Extract rows concerning mobility
        mob_flow = df_flow.loc[df_flow['target'].str.startswith('MOBILITY_'), :]
        mob_flow_2 = df_flow.loc[df_flow['target'].isin(
            df_flow.loc[df_flow['target'].str.startswith('MOBILITY_'), :]['source'].unique()), :]
        # Drop rows concerning mobility as they will be merged
        df_flow = df_flow.loc[~df_flow['target'].str.startswith('MOBILITY_') * ~df_flow['target'].isin(
            df_flow.loc[df_flow['target'].str.startswith('MOBILITY_'), :]['source'].unique()), :]
        # Aggregate value on type of technologies (source) and on type of mobility (target)
        mob_flow = mob_flow.groupby([mob_flow['source'].str.split('_', expand=True).loc[:, 0],
                                     mob_flow['target'].str.rsplit('_', n=1, expand=True).loc[:, 0]]).sum()
        mob_flow_2 = mob_flow_2.groupby(
            [mob_flow_2['target'].str.split('_', expand=True).loc[:, 0], mob_flow_2['source'].values]).sum()
        # Clean df
        mob_flow = mob_flow.drop(['source', 'target'], axis=1)
        mob_flow_2 = mob_flow_2.drop(['source', 'target'], axis=1)
        # Reset index
        mob_flow.reset_index(names=['source', 'target'], inplace=True)
        mob_flow_2.reset_index(names=['target', 'source'], inplace=True)
        # Concat dfs
        df_flow = pd.concat([df_flow, mob_flow, mob_flow_2]).reset_index().drop(columns='index')

    if aggregate_grid:
        ## Add EUD
        # TODO Aggregate flow of the different type of elec
        EUD = results.parameters['end_uses_demand_year']
        EUD = EUD.loc[EUD['end_uses_demand_year'] > 0, :]
        EUD = EUD.reset_index().groupby('index0').sum().reset_index().loc[:, ['index0', 'end_uses_demand_year']]
        EUD = EUD.rename(columns={'index0': 'source', 'end_uses_demand_year': 'value'})
        EUD = EUD.loc[EUD['source'].str.contains('ELECTRICITY'), :]
        EUD['source'] = "ELECTRICITY"
        EUD['target'] = 'EUD_' + EUD['source']

        ## Aggregation of grids flows
        techno_grids = (
        'EXP', 'TRAFO', 'COMP')  # TODO might be replaced by a sets: INFRASTRUCTURE_GAS_GRID INFRASTRUCTURE_ELEC_GRID
        # Extract all flows that have an input/output of ELECTRICITY
        df_elec = df_flow.loc[
                  df_flow['target'].str.contains('ELECTRICITY_') + df_flow['source'].str.contains('ELECTRICITY_'), :]
        # Exception for exports
        df_elec = df_elec.loc[~df_elec['target'].str.contains('EXPORT')]
        df_flow.loc[df_flow['target'].str.contains('EXPORT'), 'source'] = "ELECTRICITY"
        # Drop them from the main df
        df_flow = df_flow.drop(df_elec.index)
        # Remove the flows related to the grid infrastructure
        df_elec = df_elec.loc[~df_elec['target'].str.contains('|'.join(techno_grids)) * ~df_elec['source'].str.contains(
            '|'.join(techno_grids)), :]
        # Rename ELECTRICITY_XXX layers
        df_elec = df_elec.replace(results.sets['ELECTRICITY_LAYERS'].loc[:, 'ELECTRICITY_LAYERS'].values, 'ELECTRICITY')

        # Aggregation for NG
        df_ng = df_flow.loc[df_flow['target'].str.contains('NG_') + df_flow['source'].str.contains('NG_'), :]
        df_flow = df_flow.drop(df_ng.index)
        df_ng = df_ng.loc[~df_ng['target'].str.contains('|'.join(techno_grids)) * ~df_ng['source'].str.contains(
            '|'.join(techno_grids)), :]
        df_ng = df_ng.replace(results.sets['NG_LAYERS'].loc[:, 'NG_LAYERS'].values, 'NG')

        # Aggregation for H2
        df_h2 = df_flow.loc[df_flow['target'].str.contains('H2_') + df_flow['source'].str.contains('H2_'), :]
        df_flow = df_flow.drop(df_h2.index)
        df_h2 = df_h2.loc[~df_h2['target'].str.contains('|'.join(techno_grids)) * ~df_h2['source'].str.contains(
            '|'.join(techno_grids)), :]
        df_h2 = df_h2.replace(results.sets['H2_LAYERS'].loc[:, 'H2_LAYERS'].values, 'H2')

        df_flow = pd.concat([df_flow, df_elec, df_ng, df_h2]).reset_index().drop(columns='index')

    if aggregate_technology:
        # List of technology types to aggregate
        techno_list = ['COGEN', 'BOILER', 'HP', 'DIRECT_ELEC', 'PV', 'RENOVATION']

        # Define a regex pattern with non-capturing groups to match flows like NG_EHP, H2_EHP, IMP_H2_EHP, NG_HP, H2_HP, etc.
        exclude_pattern = r'(?:NG|H2|IMP_H2)_(?:EHP|HP)'

        # Create masks to identify rows with matching patterns in target and source
        exclude_mask_target = df_flow['target'].str.contains(exclude_pattern, regex=True)
        exclude_mask_source = df_flow['source'].str.contains(exclude_pattern, regex=True)

        # Iterate over technologies for aggregation, ensuring exclusions
        for tech in techno_list:
            # Replace only where the rows do not match the exclude pattern
            df_flow.loc[
                (df_flow['target'].str.contains(tech)) & ~exclude_mask_target, 'target'
            ] = tech

            df_flow.loc[
                (df_flow['source'].str.contains(tech)) & ~exclude_mask_source, 'source'
            ] = tech

    return df_flow

plot_comparison ¤

plot_comparison(
    results,
    variable,
    category,
    labels=None,
    run1=None,
    run2=None,
) -> Figure

Plots the parametrization results by visualizing the specified variable for two selected runs using a mirror bar plot.

Parameters:¤

results : Result A Result object containing the processed output data.

str

The name of the variable to be plotted. This should correspond to a column in the 'df_annual' DataFrame stored within the results object.

str

The grouping category for the plot. This should be a column in the 'df_annual' DataFrame, which will be used to group and color the results (e.g., 'Sector', 'Category').

dict, optional

A dictionary of custom labels to use in the plot for axis titles and hover information. Default is an empty dictionary.

int, optional

The first run to compare in the mirror bar plot.

int, optional

The second run to compare in the mirror bar plot.

Returns:¤

go.Figure A Plotly Figure object. This can be displayed using fig.show() or saved to an HTML file using fig.write_html().

Source code in src/energyscope/plots.py
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
def plot_comparison(results, variable, category, labels=None, run1=None, run2=None) -> go.Figure:
    """
    Plots the parametrization results by visualizing the specified variable for two selected runs using a mirror bar plot.

    Parameters:
    -----------
    results : Result
        A Result object containing the processed output data.

    variable : str
        The name of the variable to be plotted. This should correspond to a column in the 'df_annual' DataFrame 
        stored within the `results` object.

    category : str
        The grouping category for the plot. This should be a column in the 'df_annual' DataFrame, which will be 
        used to group and color the results (e.g., 'Sector', 'Category').

    labels : dict, optional
        A dictionary of custom labels to use in the plot for axis titles and hover information. Default is an empty dictionary.

    run1 : int, optional
        The first run to compare in the mirror bar plot.

    run2 : int, optional
        The second run to compare in the mirror bar plot.

    Returns:
    --------
    go.Figure
        A Plotly Figure object. This can be displayed using `fig.show()` or saved to an HTML file
        using `fig.write_html()`.
    """
    # Define category color mapping (only for specific categories)
    category_colors = {
        "Electricity": "#808080",  # Gray (Coal)
        "Mobility": "#8B0000",  # Dark Red (Combined-Cycle Gas)
        "Electric Infrastructure": "#000000",  # Black (Oil)
        "Gas Infrastructure": "#B22222",  # Firebrick (Open-Cycle Gas)
        "Wind": "#0000FF",  # Blue (Onshore Wind)
        "PV": "#FFD700",  # Gold (Solar)
        "Geothermal": "#D3B9DA",  # Light Purple (Geothermal)
        "Hydro River & Dam": "#008080",  # Teal (Reservoir & Dam)
        "Industry": "#006400",  # Dark Green (Biomass)
        "Industrial Heat": "#006400",  # Dark Green (Biomass)
        "Domestic Heat": "#FFA500",  # Orange (Nuclear)
        "Hydro Storage": "#00CED1",  # Dark Turquoise (Pumped Hydro Storage)
        "Storage": "#ADD8E6",  # Light Blue (Offshore Wind AC)
        "Electrolysis": "#66CDAA",  # Medium Aquamarine (Run of River)
        "Carbon Capture": "#A52A2A"  # Brown (Lignite)
    }

    # Extract the 'df_annual' DataFrame from the results object
    df = results.postprocessing['df_annual'].reset_index()  # Bring the multi-index levels as columns

    # Filter the DataFrame based on the selected runs
    df_run1 = df[df['Run'] == run1]
    df_run2 = df[df['Run'] == run2]

    # Group by category and sum for each run
    df_run1_grouped = df_run1.groupby(category).sum()[variable]
    df_run2_grouped = df_run2.groupby(category).sum()[variable]

    # Ensure that both DataFrames have the same categories for comparison
    categories = df_run1_grouped.index.union(df_run2_grouped.index)

    # Align the two DataFrames to have the same categories
    df_run1_grouped = df_run1_grouped.reindex(categories, fill_value=0)
    df_run2_grouped = df_run2_grouped.reindex(categories, fill_value=0)
    max_value = max(df_run1_grouped.max(), df_run2_grouped.max())

    # Apply natural breaks (e.g., multiples of 5, 10, 50, 100)
    scale_factor = 10 ** (len(str(int(max_value))) - 1)
    natural_break = np.ceil(max_value / scale_factor) * scale_factor
    tick_step = natural_break / 5  # 5 intervals
    tickvals = np.arange(-natural_break, natural_break + tick_step, tick_step)
    ticktext = [abs(int(i)) for i in tickvals]

    # Calculate the common and additional values between the two runs
    common_values = np.minimum(df_run1_grouped, df_run2_grouped)
    additional_run1 = df_run1_grouped - common_values
    additional_run2 = df_run2_grouped - common_values

    # Fallback to Plotly's default color palette if the theme has no colors
    default_colors = [
        "#636EFA", "#EF553B", "#00CC96", "#AB63FA", "#FFA15A",
        "#19D3F3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52"
    ]

    # Use theme colors or fallback to the default Plotly color palette
    theme_colors = go.layout.Template().layout.colorway or default_colors

    # Fallback to theme colors for categories without predefined colors
    colors = [category_colors.get(cat, theme_colors[i % len(theme_colors)]) for i, cat in enumerate(categories)]

    # Calculate yshift dynamically based on the number of categories
    yshift_delta = max(10, 50 / len(categories))  # Adjusts dynamically; minimum shift is 10

    # Create the mirror bar plot
    fig = go.Figure()

    # Add common values (with transparency) for run1 (negative side)
    fig.add_trace(go.Bar(
        y=categories,
        x=-common_values,  # Plot common values for run1 (negative side)
        orientation='h',
        showlegend=False,
        opacity=0.5,  # Add transparency
        marker=dict(color=colors)  # Apply category colors or theme fallback
    ))

    # Add additional values (without transparency) for run1 (negative side)
    fig.add_trace(go.Bar(
        y=categories,
        x=-additional_run1,  # Plot additional values for run1 (negative side)
        orientation='h',
        showlegend=False,
        marker=dict(color=colors)  # Apply category colors or theme fallback
    ))

    # Add common values (with transparency) for run2 (positive side)
    fig.add_trace(go.Bar(
        y=categories,
        x=common_values,  # Plot common values for run2 (positive side)
        orientation='h',
        showlegend=False,
        opacity=0.5,  # Add transparency
        marker=dict(color=colors)  # Apply category colors or theme fallback
    ))

    # Add additional values (without transparency) for run2 (positive side)
    fig.add_trace(go.Bar(
        y=categories,
        x=additional_run2,  # Plot additional values for run2 (positive side)
        orientation='h',
        showlegend=False,
        marker=dict(color=colors)  # Apply category colors or theme fallback
    ))

    # Add annotations for the total values at each extremity (outside the bar)
    for i, category in enumerate(categories):
        # Run1 (negative side): Total value (common + additional)
        if df_run1_grouped[category] != 0:
            fig.add_annotation(
                x=-df_run1_grouped[category],  # Position at the end of the bar
                y=category,  # Corresponding category
                text=f'{df_run1_grouped[category]:.0f}',  # Rounded to whole numbers
                showarrow=False,
                xanchor="right",  # Align text outside the negative bar (left side)
                font=dict(size=12),
                xshift=-5  # Shift text outside the bar
            )

        # Run2 (positive side): Total value (common + additional)
        if df_run2_grouped[category] != 0:
            fig.add_annotation(
                x=df_run2_grouped[category],  # Position at the end of the bar
                y=category,  # Corresponding category
                text=f'{df_run2_grouped[category]:.0f}',  # Rounded to whole numbers
                showarrow=False,
                xanchor="left",  # Align text outside the positive bar (right side)
                font=dict(size=12),
                xshift=5  # Shift text outside the bar
            )

        # Plot the difference above the difference bar (outside, higher than the bar)
        if additional_run1[category] > 0:  # For run1 (negative side)
            mid_point_run1 = -common_values[category] - (additional_run1[category] / 2)  # Midpoint of the additional bar
            fig.add_annotation(
                x=mid_point_run1,  # Middle of the additional part for run1
                y=category,  # Corresponding category
                text=f'{abs(additional_run1[category]):.0f}',  # Difference (absolute value) rounded
                showarrow=False,
                bgcolor='rgba(255, 255, 255, 0.6)',  # Semi-transparent white background (RGBA format)
                #yshift=yshift_delta,  # Move the text higher above the bar
                font=dict(size=8)  # Smaller font for delta
            )

        if additional_run2[category] > 0:  # For run2 (positive side)
            mid_point_run2 = common_values[category] + (additional_run2[category] / 2)  # Midpoint of the additional bar
            fig.add_annotation(
                x=mid_point_run2,  # Middle of the additional part for run2
                y=category,  # Corresponding category
                text=f'{abs(additional_run2[category]):.0f}',  # Difference (absolute value) rounded
                showarrow=False,
                bgcolor='rgba(255, 255, 255, 0.6)',  # Semi-transparent white background (RGBA format)
                #yshift=yshift_delta,  # Move the text higher above the bar
                font=dict(size=8)  # Smaller font for delta
            )

    # Update layout
    fig.update_layout(
        template="plotly_white",
        title=f"Comparison {labels.get(variable, variable)} between Run {run1} and Run {run2}",
        xaxis=dict(
            title=labels.get(variable, variable) if labels else variable,
            range=[-natural_break, natural_break],  # Symmetrical x-axis limits
            tickvals=tickvals,  # Natural breaks (multiples of 5, 10, 50, 100)
            ticktext=ticktext,  # Symmetric labels
            zeroline=True  # Add zero line for mirror effect
        ),
        yaxis=dict(
            title=None,  # Remove y-axis title
            automargin=True,  # Automatically adjust margins for long labels
            ticklabelposition="outside",  # Ensure labels are placed outside the plot
            ticks="outside",  # Draw ticks outside the plot
            ticklen=20,  # Increase the tick length to add space between labels and plot
            tickcolor='rgba(0,0,0,0)'  # Make the tick marks fully transparent
        ),
        bargap=1 - 1 / 1.618,  # Make bars narrower
        barmode='relative'  # Use 'relative' to ensure stacking works for both positive and negative values
    )

    return fig

plot_distribution ¤

plot_distribution(result: list[Result]) -> None
Source code in src/energyscope/plots.py
271
272
def plot_distribution(result: list[Result]) -> None:
    return None

plot_parametrisation ¤

plot_parametrisation(
    results,
    variable: str,
    category: str,
    labels: dict = None,
) -> Figure

Plots the parametrization results by visualizing the specified variable over multiple runs, grouped by a given category.

Parameters:¤

results : Result A Result object containing the processed output data.

str

The name of the variable to be plotted. This should correspond to a column in the 'df_annual' DataFrame stored within the results object.

str

The grouping category for the plot. This should be a column in the 'df_annual' DataFrame, which will be used to group and color the results (e.g., 'Sector', 'Category').

dict, optional

A dictionary of custom labels to use in the plot for axis titles and hover information. This can be used to provide more descriptive or human-readable labels for the plot. Default is an empty dictionary.

Example:

labels = {
    "Run": "Simulation Run",
    "variable": "Variable Name",
    "category": "Technology Sector"
}

Returns:¤

go.Figure A Plotly Figure object. This can be displayed using fig.show() or saved to an HTML file using fig.write_html().

Example:¤

To plot the annual investment costs for different sectors over multiple runs:

plot_parametrisation(results, variable='C_inv_an', category='Sector', labels={'Run': 'Run Number', 'C_inv_an': 'Annual Investment Costs'})
Source code in src/energyscope/plots.py
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
def plot_parametrisation(results, variable: str, category: str, labels: dict = None) -> go.Figure:
    """
    Plots the parametrization results by visualizing the specified variable over multiple runs, grouped by a given category.

    Parameters:
    -----------
    results : Result
        A Result object containing the processed output data. 

    variable : str
        The name of the variable to be plotted. This should correspond to a column in the 'df_annual' DataFrame 
        stored within the `results` object.

    category : str
        The grouping category for the plot. This should be a column in the 'df_annual' DataFrame, which will be 
        used to group and color the results (e.g., 'Sector', 'Category').

    labels : dict, optional
        A dictionary of custom labels to use in the plot for axis titles and hover information. This can be used to 
        provide more descriptive or human-readable labels for the plot. Default is an empty dictionary.

        Example:
        ```
        labels = {
            "Run": "Simulation Run",
            "variable": "Variable Name",
            "category": "Technology Sector"
        }
        ```

    Returns:
    --------
    go.Figure
        A Plotly Figure object. This can be displayed using `fig.show()` or saved to an HTML file
        using `fig.write_html()`.

    Example:
    --------
    To plot the annual investment costs for different sectors over multiple runs:

    ```
    plot_parametrisation(results, variable='C_inv_an', category='Sector', labels={'Run': 'Run Number', 'C_inv_an': 'Annual Investment Costs'})
    ```
    """
    labels = labels or {}
    df = results.postprocessing['df_annual']
    df_plot = df.groupby(['Run', category]).sum()
    df_plot['color'] = df_plot.index.get_level_values(1).map(lambda x: str(default_colors[x]))

    fig = px.area(df_plot.reset_index(), x="Run", y=variable, color=category, template = "simple_white", labels=labels)
    return fig

plot_sankey ¤

plot_sankey(
    result: Result,
    aggregate_mobility: bool = True,
    aggregate_grid: bool = True,
    aggregate_technology: bool = True,
    run_id: int = 0,
    colors: Union[Colors, dict] = None,
) -> Figure
Source code in src/energyscope/plots.py
264
265
266
267
268
def plot_sankey(result: Result, aggregate_mobility: bool = True, aggregate_grid: bool = True,
                aggregate_technology: bool = True, run_id: int = 0, colors: Union[Colors, dict] = None) -> go.Figure:
    df_flow = generate_sankey_flows(result, aggregate_mobility=aggregate_mobility, aggregate_grid=aggregate_grid,
                                    aggregate_technology=aggregate_technology, run_id=run_id)
    return _create_sankey_figure(df_flow, Colors.cast(colors or default_colors))