Skip to content

energyscope ¤

Classes:

Energyscope ¤

Energyscope(
    model: Model = monthly,
    solver_options: dict = {"solver": "gurobi"},
)

Methods:

  • add_technology

    Adds a new technology to the energy system model, assigns the technology to sets,

  • calc

    Calls AMPL with df as .dat and returns the parsed result.

  • calc_sequence

    Calls AMPL n times varying parameters based on sequence with data as .dat.

  • export_ampl

    Exports the model and data to .mod and .dat files for AMPL.

  • export_glpk

    Exports the model and data to files for GLPK.

Attributes:

Source code in src/energyscope/energyscope.py
16
17
18
def __init__(self, model: Model = monthly, solver_options: dict = {'solver': 'gurobi'}):
    self.model = model
    self.solver_options = solver_options

es_model property ¤

es_model: AMPL

model instance-attribute ¤

model = model

solver_options instance-attribute ¤

solver_options = solver_options

add_technology ¤

add_technology(
    tech_parameters: dict,
    output_dir: str,
    tech_sets: dict = None,
)

Adds a new technology to the energy system model, assigns the technology to sets, and defines all parameters including layers_in_out for the technology.

Parameters:¤

tech_parameters : dict Dictionary containing all technology parameters, including: - Name of the technology (required) - Optional parameters: If not provided, default values will be used. - ref_size (default: 0.001) - c_inv (default: 0.000001) - c_maint (default: 0) - lifetime (default: 20) - f_max (default: 300000) - f_min (default: 0) - fmax_perc (default: 1) - fmin_perc (default: 0) - c_p_t (default: 1 for all periods) - c_p (default: 1) - gwp_constr (default: 0) - trl (default: 9) - layers_in_out (default: 0 for all layers like 'ELECTRICITY_MV', 'HEAT_LOW_T_DHN', 'COAL')

str

Directory where the output .dat file will be saved.

dict, optional

A dictionary of sets that the technology belongs to, in the format: { 'TECHNOLOGIES_OF_END_USES_TYPE': ['ELECTRICITY_MV'], 'TECHNOLOGIES_OF_END_USES_TYPE': ['HEAT_LOW_T_DHN'] } Default: {'INFRASTRUCTURE': True} when nothing is declared.

Returns:¤

None

Source code in src/energyscope/energyscope.py
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
def add_technology(self, tech_parameters: dict, output_dir: str, tech_sets: dict = None):
    """
    Adds a new technology to the energy system model, assigns the technology to sets,
    and defines all parameters including layers_in_out for the technology.

    Parameters:
    -----------
    tech_parameters : dict
        Dictionary containing all technology parameters, including:
            - Name of the technology (required)
            - Optional parameters: If not provided, default values will be used.
                - ref_size (default: 0.001)
                - c_inv (default: 0.000001)
                - c_maint (default: 0)
                - lifetime (default: 20)
                - f_max (default: 300000)
                - f_min (default: 0)
                - fmax_perc (default: 1)
                - fmin_perc (default: 0)
                - c_p_t (default: 1 for all periods)
                - c_p (default: 1)
                - gwp_constr (default: 0)
                - trl (default: 9)
                - layers_in_out (default: 0 for all layers like 'ELECTRICITY_MV', 'HEAT_LOW_T_DHN', 'COAL')

    output_dir : str
        Directory where the output `.dat` file will be saved.

    tech_sets : dict, optional
        A dictionary of sets that the technology belongs to, in the format:
            {
                'TECHNOLOGIES_OF_END_USES_TYPE': ['ELECTRICITY_MV'],
                'TECHNOLOGIES_OF_END_USES_TYPE': ['HEAT_LOW_T_DHN']
            }
        Default: {'INFRASTRUCTURE': True} when nothing is declared.

    Returns:
    --------
    None
    """
    try:
        tech_name = tech_parameters.get('name')
        if not tech_name:
            raise ValueError("Technology name is required in tech_parameters.")

        # Step 2: Assign default values to optional parameters if they are not provided
        default_params = {
            'ref_size': 0.001,
            'c_inv': 0.000001,
            'c_maint': 0,
            'lifetime': 20,
            'f_max': 300000,
            'f_min': 0,
            'fmax_perc': 1,
            'fmin_perc': 0,
            'c_p_t': {i: 1 for i in range(1, 13)},  # Default capacity factor for each month (1 for all)
            'c_p': 1,
            'gwp_constr': 0,
            'trl': 9,
            # layers_in_out default to 0 for layers 'ELECTRICITY_MV', 'HEAT_LOW_T_DHN', and 'COAL'
            'layers_in_out': {
                'ELECTRICITY_MV': 0,
                'HEAT_LOW_T_DHN': 0,
                'COAL': 0
            }
        }

        for attr in default_params.keys():
            if not attr in tech_parameters.keys():
                print(attr + " is not defined, default value: " + str(default_params[attr]) + " will be used.")

        # Update default_params with any values provided in tech_parameters
        for param, default_value in default_params.items():
            tech_parameters[param] = tech_parameters.get(param, default_value)

        # Step 3: Validate all technology parameters
        required_params = [
            'ref_size', 'c_inv', 'c_maint', 'lifetime', 'f_max', 'f_min', 'fmax_perc',
            'fmin_perc', 'c_p_t', 'c_p', 'gwp_constr', 'trl', 'layers_in_out'
        ]
        for param in required_params:
            if param not in tech_parameters:
                raise ValueError(f"Missing required parameter: {param}")

        # Step 4: Create a .dat file for the technology, including layers_in_out
        output_file = os.path.join(output_dir, f"{tech_parameters['name']}.dat")

        with open(output_file, 'w') as f:
            tech_abbreviation = tech_parameters['name']
            f.write(f"### Technology: {tech_abbreviation}\n")

            # Add the technology to the relevant sets
            tech_sets = tech_sets or {'INFRASTRUCTURE': True}
            for set_type, set_values in tech_sets.items():
                if isinstance(set_values, list):
                    for value in set_values:
                        f.write(
                            f"let {set_type}['{value}'] := {set_type}['{value}'] union '{{{tech_abbreviation}}}';\n")
                else:
                    f.write(f"let {set_type} := {set_type} union {{'{tech_abbreviation}'}};\n")

            # Write layers_in_out
            for layer, value in tech_parameters['layers_in_out'].items():
                f.write(f"let layers_in_out['{tech_abbreviation}','{layer}'] := {value}; #\n")

            # Write other parameters in the specified format
            f.write(f"let ref_size['{tech_abbreviation}'] := {tech_parameters['ref_size']} ; # [GW]\n")
            f.write(f"let c_inv['{tech_abbreviation}'] := {tech_parameters['c_inv']} ; #\n")
            f.write(f"let c_maint['{tech_abbreviation}'] := {tech_parameters['c_maint']} ; # [MCHF/GW/year]\n")
            f.write(f"let gwp_constr['{tech_abbreviation}'] := {tech_parameters['gwp_constr']} ; # ktCO2-eq./GW\n")
            f.write(f"let lifetime['{tech_abbreviation}'] := {tech_parameters['lifetime']} ; # year\n")
            f.write(f"let c_p['{tech_abbreviation}'] := {tech_parameters['c_p']} ; # -\n")
            f.write(f"let fmin_perc['{tech_abbreviation}'] := {tech_parameters['fmin_perc']} ; #\n")
            f.write(f"let fmax_perc['{tech_abbreviation}'] := {tech_parameters['fmax_perc']} ; #\n")
            f.write(f"let f_min['{tech_abbreviation}'] := {tech_parameters['f_min']} ; # [GW]\n")
            f.write(f"let f_max['{tech_abbreviation}'] := {tech_parameters['f_max']} ; # [GW]\n")

            # Write capacity factors for each period (c_p_t)
            for month, value in tech_parameters['c_p_t'].items():
                f.write(f"let c_p_t['{tech_abbreviation}',{month}] := {value} ; #\n")

        # Step 5: Append the technology to the model's dataset (e.g., infrastructure)
        self.model.dat_files.append(output_file)

        print(f"Technology '{tech_abbreviation}' successfully added and saved in {output_file}")

    except Exception as e:
        # Handle errors, print a message, and prevent further processing.
        print(f"Error while adding technology: {e}")
        return None

calc ¤

calc(
    ds: Dataset = None,
    parser: Callable[[AMPL], Result] = parse_result,
) -> Result

Calls AMPL with df as .dat and returns the parsed result.

Source code in src/energyscope/energyscope.py
62
63
64
65
66
67
68
69
70
71
72
73
74
def calc(self, ds: Dataset = None, parser: Callable[[AMPL], Result] = parse_result) -> Result:
    """
    Calls AMPL with `df` as .dat and returns the parsed result.
    """
    if self.es_model.getSets().__len__() == 0: # Check if AMPL instance is empty
        self._initial_run(ds=ds)

    # Solve the model
    self.es_model.solve()
    if self.es_model.solve_result_num > 99:
        raise ValueError(f"No optimal solution found, see error: ", self.es_model.solve_result_num)

    return parser(self.es_model, id_run=0)

calc_sequence ¤

calc_sequence(
    data: DataFrame,
    parser: Callable[[AMPL], Result] = parse_result,
    ds: Dataset = None,
) -> list[Result]

Calls AMPL n times varying parameters based on sequence with data as .dat.

Parameters:¤

data : pd.DataFrame A DataFrame containing the parameters and their associated values to be used in the AMPL model. The DataFrame should have the following structure:

- `param`: (str) The name of the parameter to be varied in the AMPL model.
- `index0`, `index1`, `index2`, `index3`: (str or categorical) Index columns used to uniquely identify the parameter
configurations. These can include specific categories or labels related to the parameter.
- `value1`, `value2`, ..., `valueN`: (float or int) One or more columns containing the numerical values to be set for the
respective parameter during each iteration of the model run. The number of value columns is flexible, ranging from 1 to N,
where N is the total number of iterations required.

Example:
```
| param                 | index0                | index1       | index2 | index3 | value1  | value2  | value3  | ... | valueN  |
|-----------------------|-----------------------|--------------|--------|--------|---------|---------|---------|-----|---------|
| f_min                 | PV                    |              |        |        | 2       | 2.6     | 5.2     | ... | 26      |
| f_max                 | PV                    |              |        |        | 2       | 2.6     | 5.2     | ... | 26      |
| end_uses_demand_year  | MOBILITY_FREIGHT_ELD  | TRANSPORTATION|        |        | 45000   | 33226.71| 33226.71| ... | 33226.71|
| c_inv                 | WIND_ONSHORE          |              |        |        | 800     | 850     | 900     | ... | 1300    |
```
Callable[[AMPL], Result], optional

A function that parses the AMPL model results. It should accept an AMPL object as input and return a Result object. The default is parse_result.

Dataset, optional

An optional dataset object that can be used during the initial run of the model.

Returns:¤

list[Result] A list of results obtained after each model run. Each element in the list corresponds to the result of one iteration of the model.

Raises:¤

ValueError If the DataFrame does not contain the required columns or if there are missing values in the critical columns.

TypeError If the 'value' columns do not contain numeric data.

Source code in src/energyscope/energyscope.py
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
def calc_sequence(self,
                  data: pd.DataFrame,
                  parser: Callable[[AMPL], Result] = parse_result,
                  ds: Dataset = None
                  ) -> list[Result]:
    """
    Calls AMPL `n` times varying `parameters` based on `sequence` with `data` as .dat.

    Parameters:
    ----------
    data : pd.DataFrame
        A DataFrame containing the parameters and their associated values to be used in the AMPL model.
        The DataFrame should have the following structure:

        - `param`: (str) The name of the parameter to be varied in the AMPL model.
        - `index0`, `index1`, `index2`, `index3`: (str or categorical) Index columns used to uniquely identify the parameter
        configurations. These can include specific categories or labels related to the parameter.
        - `value1`, `value2`, ..., `valueN`: (float or int) One or more columns containing the numerical values to be set for the
        respective parameter during each iteration of the model run. The number of value columns is flexible, ranging from 1 to N,
        where N is the total number of iterations required.

        Example:
        ```
        | param                 | index0                | index1       | index2 | index3 | value1  | value2  | value3  | ... | valueN  |
        |-----------------------|-----------------------|--------------|--------|--------|---------|---------|---------|-----|---------|
        | f_min                 | PV                    |              |        |        | 2       | 2.6     | 5.2     | ... | 26      |
        | f_max                 | PV                    |              |        |        | 2       | 2.6     | 5.2     | ... | 26      |
        | end_uses_demand_year  | MOBILITY_FREIGHT_ELD  | TRANSPORTATION|        |        | 45000   | 33226.71| 33226.71| ... | 33226.71|
        | c_inv                 | WIND_ONSHORE          |              |        |        | 800     | 850     | 900     | ... | 1300    |
        ```

    parser : Callable[[AMPL], Result], optional
        A function that parses the AMPL model results. It should accept an AMPL object as input and return a Result object.
        The default is `parse_result`.

    ds : Dataset, optional
        An optional dataset object that can be used during the initial run of the model.

    Returns:
    -------
    list[Result]
        A list of results obtained after each model run. Each element in the list corresponds to the result of one iteration of the model.

    Raises:
    ------
    ValueError
        If the DataFrame does not contain the required columns or if there are missing values in the critical columns.

    TypeError
        If the 'value' columns do not contain numeric data.
    """

    # Check for required columns
    required_columns = ['param', 'index0', 'index1', 'index2', 'index3']
    missing_columns = [col for col in required_columns if col not in data.columns]
    if missing_columns:
        raise ValueError(f"DataFrame is missing the following required columns: {missing_columns}")

    value_columns = [col for col in data.columns if col.startswith('value')]
    if not value_columns:
        raise ValueError("No 'value' columns found in the DataFrame. At least one 'value' column is required.")

    # Check for missing values in critical columns
    if data['param'].isnull().any():
        raise ValueError("Missing values found in the 'param' column.")
    if data['index0'].isnull().any():
        raise ValueError("Missing values found in the 'index0' column.")

    # Check for correct data types
    for col in value_columns:
        if not pd.api.types.is_numeric_dtype(data[col]):
            raise TypeError(f"Column '{col}' should contain numeric data, but found non-numeric values.")

    # Initial Run
    unique_params = data['param'].unique()
    if self.es_model.getSets().__len__() == 0: # Check if AMPL instance is empty
        self._initial_run(ds=ds)

    parameters = {param: self.es_model.get_parameter(param) for param in unique_params}

    data_index_columns = data.columns[data.columns.str.startswith('index')].to_list()
    results_n = {}

    # Remaining runs
    for j in range(len(value_columns)):

        for index, row in data.iterrows():  # iter on param to change 
            try:
                params_to_set = row[data_index_columns + [value_columns[j]]].dropna()
                params_to_set_df = pd.DataFrame([params_to_set.values], columns=params_to_set.index)
                index_columns = [col for col in data_index_columns if col in params_to_set_df.columns]
                params_to_set_df.set_index(index_columns, inplace=True)
                parameters[row['param']].set_values(params_to_set_df)
            except KeyError as e:
                raise ValueError(f"Index error in row {index}: {e}")

        # Solve model and parse result
        self.es_model.solve()
        print(j+1)

        if self.es_model.solve_result_num > 99:
            print(f"No optimal solution found, see error: ", self.es_model.solve_result_num)

        # Merge results of the sequence
        results_i = parser(self.es_model, id_run=j + 1)
        if j == 0:
            results_n = results_i
        else:
            results_n.variables = {name: pd.concat([results_n.variables[name], results_i.variables[name]]) for name
                                   in results_n.variables.keys()}
            results_n.parameters = {name: pd.concat([results_n.parameters[name], results_i.parameters[name]]) for
                                    name in results_n.parameters.keys()}
            results_n.objectives = {name: pd.concat([results_n.objectives[name], results_i.objectives[name]]) for
                                    name in results_n.objectives.keys()}
    return results_n

export_ampl ¤

export_ampl(
    mod_filename: str = "/tutorial_output/energyscope.mod",
    dat_filename: str = "/tutorial_output/energyscope.dat",
)

Exports the model and data to .mod and .dat files for AMPL.

Parameters:

  • mod_filename ¤

    (str, default: '/tutorial_output/energyscope.mod' ) –

    Path to the .mod file to export the model.

  • dat_filename ¤

    (str, default: '/tutorial_output/energyscope.dat' ) –

    Path to the .dat file to export the data.

Source code in src/energyscope/energyscope.py
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
def export_ampl(self, mod_filename: str = '/tutorial_output/energyscope.mod',
                dat_filename: str = '/tutorial_output/energyscope.dat'):
    """
    Exports the model and data to .mod and .dat files for AMPL.

    Args:
        mod_filename (str): Path to the .mod file to export the model.
        dat_filename (str): Path to the .dat file to export the data.
    """
    # Create an AMPL instance
    self.es_model.reset()

    # Load the model files
    self._load_model_files()

    # Export the model and data
    self.es_model.export_model(mod_filename)
    self.es_model.export_data(dat_filename)

export_glpk ¤

export_glpk(mod_filename: str, dat_filename: str)

Exports the model and data to files for GLPK.

Parameters:

  • mod_filename ¤

    (str) –

    Path to the .mod file to export the model.

  • dat_filename ¤

    (str) –

    Path to the .dat file to export the data.

Source code in src/energyscope/energyscope.py
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
def export_glpk(self, mod_filename: str, dat_filename: str):
    """
    Exports the model and data to files for GLPK.

    Args:
        mod_filename (str): Path to the .mod file to export the model.
        dat_filename (str): Path to the .dat file to export the data.
    """
    # Create an AMPL instance
    self.es_model.reset()

    # Read the model and data files
    for mod_file in self.model.mod_files:
        self.es_model.read(mod_file)

    for dat_file in self.model.dat_files:
        self.es_model.read_data(dat_file)

    # Export the base model and data files
    self.es_model.export_model(mod_filename)
    self.es_model.export_data(dat_filename)

    # Perform modifications for GLPK compatibility on the exported .mod file
    with open(mod_filename, 'r') as file:
        mod_content = file.read()

    # Extract content between ###model-start and ###model-end
    mod_match = re.search(r'###model-start(.*?)###model-end', mod_content, re.DOTALL)
    if not mod_match:
        raise ValueError("Markers '###model-start' and '###model-end' not found in the .mod file.")

    # Get the content between markers
    mod_between_content = mod_match.group(1)

    # Remove newlines followed by a space (\n\s)
    mod_between_content = re.sub(r'\n\s', '', mod_between_content)

    # Replace parameter and set definitions with ":=" definitions
    mod_between_content = re.sub(r'(param\s+\w+(\{[^}]+\})?\s*)=\s*(.*?);', r'\1:= \3;', mod_between_content)
    mod_between_content = re.sub(r'(set\s+\w+(\{[^}]+\})?\s*)=\s*(.*?);', r'\1:= \3;', mod_between_content)
    mod_between_content = re.sub(r' = ', r' := ', mod_between_content)

    # Reconstruct the .mod file content
    modified_mod_content = f'###model-start{mod_between_content}###model-end'

    # Write the modified content back to the .mod file
    with open(mod_filename, 'w') as file:
        file.write(modified_mod_content)
        file.write('\nsolve;')

    # Perform modifications for GLPK compatibility on the exported .dat file
    with open(dat_filename, 'r') as file:
        dat_content = file.read()

    # Extract content between ###data-start and ###data-end
    dat_match = re.search(r'###data-start(.*?)###data-end', dat_content, re.DOTALL)
    if not dat_match:
        raise ValueError("Markers '###data-start' and '###data-end' not found in the .dat file.")

    # Get the content between markers
    dat_between_content = dat_match.group(1)

    # Remove data; and model; instructions
    dat_between_content = re.sub(r'\ndata;', '', dat_between_content)
    dat_between_content = re.sub(r'\nmodel;', '', dat_between_content)

    # Reconstruct the .dat file content
    modified_dat_content = f'###data-start{dat_between_content}###data-end'

    # Write the modified content back to the .dat file
    with open(dat_filename, 'w') as file:
        file.write(modified_dat_content)