datasets
¤
Modules:
-
data
–
Classes:
-
Dataset
–
Functions:
-
gen_sobol_sequence
–Generates a Sobol sequence for sensitivity analysis based on the provided parameter specifications.
-
parametrize_params
–Creates a parametrized dataframe by generating sequences of values between a minimum and maximum value
Attributes:
-
quebec
– -
quebec_td
– -
quebec_transition
–
quebec
module-attribute
¤
quebec = Dataset(
read_csv(
__from_data(
"infrastructure/quebec/2020/quebec_technologies.csv"
)
),
read_csv(
__from_data(
"infrastructure/quebec/2020/quebec_demands.csv"
)
),
read_csv(
__from_data(
"infrastructure/quebec/2020/quebec_resources.csv"
)
),
)
quebec_td
module-attribute
¤
quebec_td = Dataset(
read_csv(
__from_data(
"infrastructure/quebec/td/quebec_td_technologies.csv"
)
),
read_csv(
__from_data(
"infrastructure/quebec/td/quebec_td_demands.csv"
)
),
read_csv(
__from_data(
"infrastructure/quebec/td/quebec_td_resources.csv"
)
),
)
quebec_transition
module-attribute
¤
quebec_transition = Dataset(
read_csv(
__from_data(
"infrastructure/quebec/transition/quebec_transition_technologies.csv"
)
),
read_csv(
__from_data(
"infrastructure/quebec/transition/quebec_transition_demands.csv"
)
),
read_csv(
__from_data(
"infrastructure/quebec/transition/quebec_transition_resources.csv"
)
),
)
Dataset
¤
Methods:
-
add_technology
–Read
name
d technology fromsource
and add it to the dataframes -
remove_technologies
–Remove the
to_remove
from all the dataframes -
use_only_technologies
–Keep only the
to_use
in all the dataframes
Attributes:
-
demands
– -
resources
– -
technologies
–
Source code in src/energyscope/datasets.py
12 13 14 15 |
|
add_technology
¤
Read name
d technology from source
and add it to the dataframes
Source code in src/energyscope/datasets.py
33 34 35 36 37 38 39 40 41 42 43 44 |
|
remove_technologies
¤
Remove the to_remove
from all the dataframes
Source code in src/energyscope/datasets.py
25 26 27 28 29 30 31 |
|
use_only_technologies
¤
Keep only the to_use
in all the dataframes
Source code in src/energyscope/datasets.py
17 18 19 20 21 22 23 |
|
gen_sobol_sequence
¤
gen_sobol_sequence(
trajectories: int = 4,
calc_second_order: bool = False,
parameters: list[dict] = None,
)
Generates a Sobol sequence for sensitivity analysis based on the provided parameter specifications.
Parameters:¤
trajectories : int, optional The number of trajectories (or samples) to generate for each parameter. This defines how many sample points will be used in the Sobol sequence. Default is 4.
bool, optional
Whether to calculate second-order effects in the Sobol sensitivity analysis. If set to True, second-order interactions between parameters will be computed, which increases the number of samples. Default is False.
list[dict], optional
A list of dictionaries, where each dictionary defines a parameter with the following keys: - 'name' : str - The name of the parameter. - 'lower_bound' : float - The lower bound of the parameter's range. - 'upper_bound' : float - The upper bound of the parameter's range.
Returns:¤
sampling : numpy.ndarray A 2D array where each row represents a sample in the Sobol sequence and each column corresponds to a parameter. The number of samples depends on the number of trajectories and whether second-order effects are considered.
dict
A dictionary defining the Sobol problem structure, which includes: - 'num_vars': The number of variables (parameters). - 'names': A list of parameter names. - 'bounds': A list of the bounds for each parameter, where each bound is a two-element list [lower_bound, upper_bound].
Example:¤
To generate a Sobol sequence for two parameters, 'alpha' and 'beta', with different bounds and four trajectories:
parameters = [
{'name': 'PV_LV', 'lower_bound': 0, 'upper_bound': 50},
{'name': 'WIND', 'lower_bound': 0, 'upper_bound': 20},
{'name': 'CCGT', 'lower_bound': 0, 'upper_bound': 10}
]
sampling, problem = gen_sobol_sequence(trajectories=4, calc_second_order=False, parameters=parameters)
Source code in src/energyscope/datasets.py
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
|
parametrize_params
¤
Creates a parametrized dataframe by generating sequences of values between a minimum and maximum value for multiple parameters, and adds optional index information for each parameter.
Parameters:¤
params : list[dict] A list of dictionaries, where each dictionary defines a parameter with the following keys: - 'param': str - The name of the parameter. - 'min_val': float - The minimum value for the sequence. - 'max_val': float - The maximum value for the sequence. - 'index0', 'index1', 'index2', 'index3': Optional values to provide additional information for the parameter.
int
The number of steps (or increments) for generating the sequence of values between min_val
and max_val
.
Returns:¤
data_frame : pandas.DataFrame A dataframe with rows for each parameter and its associated index columns, along with the generated sequence of values as additional columns.
Example:¤
To generate a dataframe for multiple parameters:
params = [
{'param': 'alpha', 'min_val': 0, 'max_val': 100, 'index0': 'group1', 'index1': 'typeA'},
{'param': 'beta', 'min_val': 50, 'max_val': 150, 'index0': 'group2', 'index1': 'typeB'}
]
df = parametrize_params(params, 5)
print(df)
This will produce:
param index0 index1 index2 index3 value1 value2 value3 value4 value5
0 alpha group1 typeA None None 0.0 25.0 50.0 75.0 100.0
1 beta group2 typeB None None 50.0 75.0 100.0 125.0 150.0
Source code in src/energyscope/datasets.py
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
|